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Brownian Mot ion  on a Manifo ld  
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The question of the existence and correct form of equations describing Brow- 
nian motion on a manifold cannot be answered by mathematics alone, but 
requires a study of the underlying physics. As in classical mechanics, manifolds 
enter through the transformation of variables needed to account for the presence 
of constraints. The constraints are either due to a physical agency that forces the 
motion to remain on a manifold, or they represent conserved quantities of the 
equation of motion themselves. Also the Brownian motion is described either by 
a Smoluchowski diffusion equation or by a Kramers equation. The four cases 
lead to the following conclusions. (i) Smoluchowski diffusion with a conserved 
quantity reduces to a diffusion equation on the manifold; (ii) The same is true 
for diffusion with a physical constraint in three dimensions, but in more dimen- 
sions it may happen that no autonomous equation on the manifold results; 
(iii) A Kramers equation with a conserved quantity reduces to an equation on 
the manifold, but in general not of the form of a Kramers equation; (iv) The 
Kramers equation with a physical constraint reduces to an autonomous 
Kramers equation on the manifold only for a special shape of that constraint. 
Throughout, only a certain type of physical constraints has been envisaged, and 
global questions are ignored. Finally, the customary heuristic construction of a 
Fokker-Planck equation for a mechanical system on a manifold is 
demonstrated for the case of Brownian rotation of a rigid body, and its 
shortcomings are emphasized. 

KEY WORDS:  Brownian motion; diffusion; Kramers equation; constraints; 
manifolds. 

1. I N T R O D U C T I O N  

Newtonian mechanics deals with particles subject to mutual and external 
forces obeying the equations 

fn = pn/mn [~. = f~(r, p) 

1 Institute for Theoretical Physics of the University at Utrecht, The Netherlands. 

1 

0022-4715/86/07013-0001505.00/0 �9 1986 PIenum Publishing Corporalien 
822/44/1-2-1 



2 N . G .  van Kampen 

(Throughout we restrict ourselves to equations that are invariant for time 
translation: external forces must be constant in time.) The r n are cartesian 
coordinates in an euclidean configuration space. In the presence of con- 
necting rods, guiding surfaces, etc., the equations have to be modified to 
take into account the effect of these constraints, as was done by 
d'Alembert. (1) When the constraints are holomic they restrict the motion to 
a submanifold M of configuration space, so that the set of coordinates rn is 
redundant. Lagrange (2~ has shown how to transform to a smaller set of 
variables qk, which describe the motion on M. They are coordinates on M 
and in general not Cartesian. A large part of modern mechanics is devoted 
to the study of the motion on such manifolds. (3) 

Such constraints are idealized descriptions of the elastic forces in the 
rods, etc., (4~ and we call them physical constraints. Another type occurs 
when the equations themselves have one or more conserved quantities 

�9 (r, c (1) 

Then the motion is automatically confined to the submanifold in phase 
space determined by (1). It is again possible to utilize this fact by transfor- 
ming to a smaller set of variables. Dirac/5) has created confusion by using 
the name constraint also for such constants of the motion; we call them 
mathematical constraints. 

Remark. In nonmechanical Lagrange problems it may happen that 
the Lagrange function L(q, O) is singular, (6) in the sense that 

c~2L 
Det = 0 

Then the momenta Pk are not independent functions of the velocities qt, 
but instead there exists an identity 

( 0 L ,  q)  = 0 (2) 

It has the same form as (1), but the constant c now has one definite value. 
This type of mathematical constraint will occur in Section 5. 

Now suppose that the particles of our system are subject to dissipation 
and therefore also to fluctuations. Then it may be described by a set of 
coupled Langevin equations, or by the equivalent Fokker-Planck equation 

OP(x, t) ~ 1 02 
0 ~ -  ax Ai(x)P-t 23xiaxjBO(x)P (3) 
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The x i are the Cartesian coordinates of the particles and may also comprise 
their momenta (Section 4). They identify the instantaneous state of the 
system as a point in a d-dimensional space Ra and summation is implied. 
The coefficients A t, B ~ embody the properties of the system and are known 
functions of x. For each x the matrix B ij is symmetric and nonnegative 
semidefinite. The motion of the system is now a Markov process whose 
transition probability P(x,  t lxo, to) (from the state xo at to into x at t) is 
that solution of (3) that is singled out by 

P(x, to) = 6(x - Xo) 

Again it may happen that the motion is confined to a submanifold in 
Rd, either by a physical or by a mathematical constraint. An example of a 
physical constraint is Brownian motion in a thin sheet between two 
impenetrable surfaces (Sections 3 and 6). A mathematical constraint occurs 
when the A i and B 'j in (3) are such that there exists a conserved quantity 
~b(x). In either case the motion is confined to a submanifold M and our 
aim is to obtain an equation in a reduced set of variables that describes the 
stochastic motion on M. 

Brownian motion on a manifold has been studied in the mathematical 
literature. C7) However, there the problem is the connection between the 
Langevin equation and the diffusion for a system confined to a manifold, 
rather than the validity of the equations for physical systems. Our strategy 
is to start from the known equations for Brownian motion in Cartesian 
coordinates and subsequently investigate the effect of the constraints, either 
mathematical or physical, which are responsible for confining the system to 
a manifold. 

In physics, Brownian motion on a manifold has been studied mainly 
in connection with the Brownian rotation of molecules. (s'9) The Euler 
angles are parameters on a three-dimensional M and one constructs a 
Fokker-Planck equation on ~ heuristically. In our last section we sketch 
this approach and indicate its shortcomings, without however being able as 
yet to provide a more satisfactory derivation in accordance with the 
strategy mentioned above. 

2. F O K K E R - P L A N C K  E Q U A T I O N  W I T H  C O N S E R V E D  
Q U A N T I T I E S  

An essential ingredient is the general transformation of the Fokker 
Planck equation (3) to new variables 2k=  )?k(x). The probability density in 
the new variables is 

Det 02k -1 
P(2., t) = P(x,  t) Ox i (4a) 



4 N . G .  van Kampen 

It obeys a Fokker-Planck equation of the same form (3) with the new 
coefficients (9,~0) 

~k = A i t~k 1 ~2s ~kt = B o Offk OXI (4b) 
+ 2 B~ O#  Ox --------~' Ox ~ Ox ~ 

A quantity qS(x) is conserved by (3) if not only its average, but all its 
moments, are constant, that is, if for every function f ( ' )  

OP(x, t) dx 
o = d  f f ( ~ ) P  d x :  f Qt 

= f P d x { A ~ O q ~  , 1 O2~b , -~x~ f (~b) +-~ B ~ I ~  f (q~) + 3~ ax--~ ~ f"(q~)]} 

The coefficients o f f "  and f '  must vanish separately 

.. ~6rl) ~qb A i (~q5 1 ~2(f9 
B'; - -  = 0, B ~ - -  - 0 (5a) 

#x ~ Ox j ~ + ~ #x ~ ~x j 

As B U is semidefinite the first condition is equivalent with 

Bil, , ~ ( x )  ~tx~ ~ = 0 (Sb) 

Thus O~/3x s must be a null vector of B ij at each point x. From this 
equation follows, on differentiating with respect to x i 

O B ~ Oq~ 02~ 
_ _ _ _  + B~J _ _  
3x ~ ~x i Ox ~ 9x s 

= 0  

Hence, the second of the conditions (5) may be written 

{A i l c~B~ ~?Cb-O (6) 
2 Ox j )  Ox ~ - 

Remark. The conditions may be interpreted in the following way. 
Write (3) as a continuity equation for the probability density, involving a 
flux j i  

aP si=(Ai 10 P 
Ot - Ox i' 2 axY J P - - ~  B ~ (7) 

The two terms of j i  are proportional to P and to its gradient and may 
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therefore be considered as the convective and diffusive flows, respectively. 
The fact that ~ is conserved is expressed by 

ic345 
J ~ x .  = 0  

Equations (5b) and (6) state that �9 must be conserved by the convective 
and diffusive flows separately. 

It must be remarked, however, that under the transformation 

3t - Oyk, ~ Oxi j Det 

the two terms of f i  do not correspond separately to those of j i  (unless the 
transformation determinant is constant). Hence, the separation in convec- 
tive and diffusive flows is not invariant for coordinate transformations, 
although of course both conditions (5) together are. 

Suppose (3) has n functionally independent conserved quantities 
q~(x). Choose as new variables .U the quantities 

z v = qSV(x) (v -- 1, 2,..., n) 

together with d - n  supplementary functions y'(x).  Then the submanifold 
M is determined by 

z v = qSV(x) = c ~ (v = 1, 2,..., n) (8) 

and the yr are coordinates on ,~. In order that the transformation is inver- 
tible one must require that the gradients #~bv/cOx ~ of the q~v are linearly 
independent, at least on D~. 

In these new variables the fact that the z ~ are conserved implies, 
according to (5) 

/~kv = 0, A~=0  

Hence the transformed equation is 

OP(y, z, t) 0 1 ~72 
B ~'" z) P 8t Oy ~ A"(y, z) P -+ 2 c3y r 63y s tY, 

As no differentiations with respect to the z u occur there are solutions of the 
form 

P(y, z, t) = S(y)  H 6( z~ - c~) 
v 



6 N.G. van Kampen 

Their support  is ~ .  The surface density S obeys a Smoluchowski equation 
with d - n  variables 

OS(y, t) 0 1 0 2 
- -  - -  ~l'sI 

Ot oyrA~(y,  c) S + 2 0 j  Oy; ty,  c) S 

S u m m a r y  

For  the Fokker -P lanck  equation (3) each conserved quantity con- 
stitutes a mathematical  constraint and enables one to eliminate one 
variable. There remains a reduced Fokker -P lanck  equation on the 
manifold determined by (8). 

3. A P H Y S I C A L  C O N S T R A I N T  

Consider two-dimensional diffusion in an inhomogeneous, anisotropic 
medium and a field of force, as described by (3) with positive definite B U. 
Let the diffusing particle be confined to a narrow strip in the plane, lying 
between two curves given by 

~ ( x  1, x 2) = 0 and (/)(X 1, x 2 ) = e (9) 

At these boundaries the particle is reflected so that the normal component  
of the probabili ty flow (7) vanishes 

Ox ~ A i p  - ~x j B~P = 0 (~  = 0, e) (10) 

Transform to the new variable z =  ~ ( x  1, x 2) and an arbitrary sup- 
plementary variable y (x ' ,  xZ), which serves as a coordinate along the strip. 
The diffusion equation transforms into 

c3P(y ,z , t )  0 - y _  1 0 2 
- A P + - ~ BYYP 

Ot 8y 2 0 y  

0 F _ ~ z p  + 0 _ _ 1 8 - - 

L + BZZe] (11 ) 

The boundary condition (10) is invariant under the transformation and 
therefore becomes 

1 0  _ _ 1 0  
A z P - - - - - B z Y P - - - - B z z P = O  (z=O,  e) (12) 

2 Oy - 2 Oz 
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Physically one might expect that P becomes constant across the strip, but 
this boundary condition shows that that is not possible. We have to 
proceed more carefully. 

We take the average of the density across the strip as the "surface den- 
sity" on the curve q~ = 0 

i f  ~ S(y, t )=~  /'(y, z, t) dz (13) 

Integrating (11) across the strip one obtains 

OS(y, t) 0 _ 1 6 2 _ 
0-----~-- @AY(y 'O)  S +  2~y 2B-~y(y'O)S 

0 1 8 z=~ 
+ ~ [ -  AzP + fffiy BZYP +-~ ~ z BZZP]z=o (14) 

On the first line the coefficients AY(y, z) and /~- ' (y ,  z) have been identified 
with their values on the manifold z = 0, neglecting terms of order e. The 
integrated term on the second line is not quite the same as that which 
occurs in the boundary condition (12), and therefore a remnant  of it sur- 
vives 

1 0 
- - - -  [B~Y(y, z) P(y, z, t ) ] ~ - ;  
2e @ 

As a consequence (14) is not a self-contained diffusion equation for S(y, t), 
unless/~zy = 0. 

In order to achieve this, one must choose y(x ~, x 2) so as to obey the 
linear first-order partial differential equation 

Bzy _ 0~ B~(x ) Oy ~x-- 7 ~-~xj = 0 (15) 

The equation states that the curves of constant y are orthogonal to those of 
constant z with respect to the metric given by B ~. It can be solved, and 
since B ~ is positive-definite the family of curves is unique. Hence, the 
function y(x 1, x 2) is unique up to an arbitrary transformation of the form 

Y= Z(Y'). 
The conclusion is that diffusion in two dimensions with one physical 

constraint (9) can be reduced in the limit e ~ 0 to a diffusion equation 
on M: 

aS(y, t) 0 ~ 1 0 2 _ 
= -8~.AY(y)~5"+-~BYY(y)Sy ~y (16) Ot 
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where y is any arbitrary parameter along the curve 45 = 0 and S(y ,  t) dy the 
probability for finding the particle between y and y + dy. 

This result, however, depends crucially on (15), which in this simple 
case always has a solution. In general, however, one has a d-dimensional 
space ~a in which a ( d -  n)-dimensional manifold M is embedded given by 
(8). The physical constraint is represented by a tubular space around M 

e V < ~ V ( x ) < c V + e  (17) 

Inside this tubular space, diffusion takes place described by (3), with reflec- 
tion on the boundary. 

Instead of the functions qsv one may use for specifying M any set of 
functions 

~.~(x) = h~(x) ~V(x) 

where the h~(x) are arbitrary functions whose determinant does not vanish. 
The corresponding tubular space 

cV<TUV(x )<c~+e  

is not the same as (17). Accordingly we formulate our problem: Is it 
possible to choose functions yr(x) ,  zV(x) such that: (i) the given manifold 
M corresponds with zV= 0, and (ii) 

B w _ Oz ~ B~(x)  OY ~ 0x--- 7 ~ = 0 (all v, r) (18) 

This is, in analogy with (15), the condition that in the limit e--, 0 the dif- 
fusion in the tubular space obeys an autonomous equation on ~ .  Without 
loss of generality we took cv=O. As can be seen from (14) it suffices that 
(18) holds to order ]z[ 2 

The problem formulated in this way is a question of differential 
geometry and is treated in the Appendix. The upshot is that it is not true 
that for all M c Ed such a set of variables exists. Hence it is not true that 
for  any given manifold one can f i nd  a physical constraint which in the limit 
e --+ 0 leads to an autonomous diffusion equation on that manifold. The excep- 
tions, however, do not occur in two or three dimensions. Admittedly only 
constraints of the type (17) have been allowed, but I expect the result to be 
general. 

4. T H E  K R A M E R S  E Q U A T I O N  

Three different descriptions of Brownian motion exist. In the first one, 
due to Einstein and Smoluchowski, (~1) the x i were the coordinates rn of the 
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particles. We call this the Smoluchowski case; it was the subject of the 
preceding section. In the description by Rayleigh ~12) and Langevin, ~3'~4) the 
x; stand for the velocities r, .  It applies to a finer time scale, on which the 
inertia of the Brownian particle cannot be neglected. But it is restricted to 
spatial homogeneity. It has been called after Rayleigh. (ls) 

We are concerned with the third case, called after Kramers, ~ which 
combines the two previous ones. One half of the x ~ stand for the coor- 
dinates and the other half for their velocities, or functions thereof, e.g., the 
momenta. For  the two sets of variables we write x s and u s. Thus our phase 
space is the tangent bundle of the configuration space of the x =. The 
Fokker-Planck equation takes the form 

OP(x, u, Ox sO G~(x, u) p_o_~_~ AS(x,  u) p 

1 02 
2 Ou ~ au e BSe(x' u) P (19) 

It is of the general form (3) with 

The zeros appearing in the block matrix B express the fact that the random 
forces act only on the velocities. 

In the Kramers case it is natural to consider only point transfor- 
mations, i.e., the subgroup of (4) determined by 

~s = (pS(x), ~ = 0S(x, u) (20) 

because they preserve the form of (19). The general formula (4) yields 

P ( ~ , ~ , t - ) = e ( x , u , t )  Det ~-~x ~ Det ~ue/ i  (21a) 

G ~ = G ~ 0(P~ /~a = B ya aO~ 00~ (21b) 
ax e' ~u ~ gu ~ 

X~ = AS OO s ~ 0~ ~ 1 02~b ~ 
~-yup + G ~-Tx~ + ~ B ya 0u ~ 0u a (21c) 

If the u ~ are the velocities themselves, G~(x, u) = u ~, then (19) reduces 
to the specific form given by Klein (17) and Kramers (16) 

OP(x,  hi, t) OP 0 1 0 2 
u ~ -  A s P +  (22) Ot ~?x ~ Ou s 2 Ou ~ ~?u ~ Bs~P 
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This form is preserved by the transformations 

2 ~= ~0~(x), ~ 0~~ u r (23) =---b-U-~ 

One finds 

P(X, ~, ~ = P ( x ,  u , t )  0 ~  2 Det~--~x ~ (24a) 

- O~._._X~f 02@ e 
A ~ = A ~ + u~u ~ (24b) 

8x~Ox ~ 

B~B = B ~ 0q )" Orp ~ 8x ~ 8x 6 (24c) 

Remark. These transformation equations may be expressed in 
familiar symbols of differential geometry, viz. 

OX ? 0X 7 
g~,~ = 0.2~ , 8.~, g~,~ g~  = 6~, (25a) 

1 ( ~  c3g~ 0 g ~  (25b) ~ = ~ Z  ~ ~ 0 ~  0~ ~ )  

The transform of (22) can be written (91 

Ot 5 ~ 8t 5 0 ~ o_ 8 - _  1 82 
o-7-- -~ 8 -~§  ~P-~-~A P~ 20~0ZB~P (26) 

where 

~ =  A~8O ~ 
8x ~ 

is a covariant vector, while B ~ is a covariant tensor according to (24c). 

The condition that ~(x,  u) is a conserved quantity of (19) takes the 
form 

o ( 1 ~u ~=0, 8x-- ~ = 0 ,  A~ 2 8u ~ j Su ~ - 0  (27) 

If q~ is a function of the x ~ alone, not involving the u s, one may apply a 
transformation (23) such that if1= 45(x). Then G I =  0, so that the transfor- 
med equation contains no differentiation with respect to x 1, and x ~ only 
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enters as a parameter in the coefficients. If, on the other hand, 45 does 
involves the u ~, one may use (20) with ~1 = ~b(x, u) and, as a result , /~1 = 0 
and ~gl=0, so that ~1 is reduced to a parameter. In this way a 
mathematical constraint has again been used to decrease the number of 
variables in (19). 

In the Kramers equation (22) a conserved quantity is, according to 
(27), necessarily a function of u alone. A function ~b(u), however, cannot in 
general be utilized as a new velocity ~1 unless it is linear, as required by 
(23). Otherwise, one has to use the more general transformation (20) and 
the transformed equation will have the general form (19) rather than (22). 

Remark.  The Kramers case resembles classical mechanics in that 
both coordinates and velocities enter, but it should be compared with 
mechanical systems with damping rather than with Lagrange mechanics. In 
the latter case a constant of the motion q~(x) = c allows one to eliminate 
one degree of freedom, i.e., one variable ql together with its velocity ql. 
We, however, have merely been able to eliminate one coordinate 21 but all 
~ are still present. 

Yet in a special case one can eliminate ~1 as well. Suppose that in the 
transformed equation all coefficients A ~, B~  with c~,/~ ~ 1 are independent 
of ~1. It is then possible to integrate the equation over ~1 so as to obtain a 
closed equation for 

foo P(x,  y, t) = S (x  2, ..... ..... t) (28) du I X 3 bl 2 , U 3 

- o o  

Only in this case does one really have a Kramers equation on the tangent 
bundle o f  g{. 

5. L IGHT RAYS IN R A N D O M  M E D I U M  AS E X A M P L E  OF A 
K R A M E R S  E Q U A T I O N  W I T H  M A T H E M A T I C A L  
C O N S T R A I N T  

Our first task is to establish an appropriate description in terms of a 
Fokker-Planck equation. A light ray in an inhomogeneous medium with 
refractive index n(x)  obeys (xS) 

dX~ds = us' ~du~ = ( ~  - u~u~) ~3 Qx ~l~ n (29) 

s is the arc length along the ray, the superscripts refer to the coordinates 
x, y, z in space, and u ~ is the tangent unit vector 

u~u~ = 1 (u~ = u ~) (30) 
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This is a mathematical  constraint of type (2). The Liouville equation 
equivalent with (29) is 

@(x, u, t) 
c~t 

where A ~ = 6 ~ - u~u ~. 

u ~ Op 0 A ~ ~ log n 
c~x~ c~u~ c~x------- T -  p (31 ) 

Suppose n(x) has a small random component;  we may set 

logn(x)=#(x)+e~c(x), <~c(x)> = 0  

Then (31) is a linear stochastic differential equation of the form 

o~?_c_~ = (L + eK) p 
Os 

L =  _ u  ~ 
0 0 

~x ~ ~u ~A~€162 K =  - 0 A ~  0u ~ ,, 

The differential operators act on everything to the right while #,~, ~c,B are 
derivatives with respect to x ~. To second order in e one obtains for the 
probability density P(x, u, t)= (p(x, u, t) ) the Fokker -P lanck  equation (19) 

OP=[L~?s L e2 ~ d~l P + fo (Ke'~LK> e--"L 

~? P 0 u 
__U ~162 Qx ~ ~ ~A~#,eP 

3 2  + c3Cgu~f: daA~r 1 ~>P (32) 

This approximation holds when e ~  1, where ~ is the autocorrelation 
length of ~c(x): 

<~c(x) K(x')> ~ 0 for I x - x ' l > ~  

The subscript - a indicates that one has to insert the values of x, u at a dis- 
tance a back along the ray. If # is constant, or if 

IV#[ ,~ 1 (33) 

one may take 

I x  ~ ] ~ = x ~ _ ~ u  ~, [ u  ~ ] _ ~  = u ~ 
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so that 

\au ~ axU A~a(u) ~c a(x-  au) 

Hence, the last term of (32) becomes 

The term containing o- as a factor is one order of ~ higher than the other 
and will be neglected. Also we abbreviate 

fo~ d~ ( ~c ~(x) < a ( x - o ' u ) )  = Cea(x, u) 

and obtain 

e 2 _ _ A ~ f i A T a C p a p _  _ _  ATa A ~ C ~ a  p 
Ou = c~u y c~u = 

Thus our Fokker Planck equation (32) takes the form of the Kramers 
equation (22) with 

B ~  = 2e 2 A~~ A~aC~a 

Having established the equation we first notice that it is compatible 
with the constraint (30) because (27) is satisfied, as is easily verified. Hence 
it is permissible to transform to new variables 0, (p by setting 

ux = sin 0 cos (p, uy = sin 0 sin q~, u= = cos 0 

The explicit computation is somewhat simplified if we assume the fluc- 
tuations •(x) to be isotropic, so that C~a(x, u) must be a tensor: 

C~a(x, u) = G a C o ( x )  + u~ua C l ( x ) ,  A=~C# = Co Ja=~ Co A=a 

B ~  = 2~2Co A ~B, A ~ = A=~#,p - 2e2Co u= 
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Explicit computation with the aid of (4b) gives 

0/5(x, y, z, O, q~, s) 
0S 

8/5 0/5 0/5 
= - s i n 0 c o s q ~ x  s in0s inq0~y cos08--z- 

8 
g0 [-/-/,x cos 0 cos (cO + ~,y COS 0 sin q~ -- #,z sin 0 + 82Co cot 0 ] /5  

0 ~,xsin~0+#,ycoscp. F+82Co~ ~ sin208(p2J 
&0 sfn 0 

In a homogeneous medium # and Co are constant. Then a number of 
terms vanish and the remaining equation can be integrated over space. One 
is then left with a Rayleigh equation for the probability distribution of the 
direction alone 

{ ~0 02P 1 82p'~ 
~P(O'~~176 - c~ 0 P+8-0-7-t sin20&02J 

Its stationary solution is P = sin 0, which is the expected constant density 
on the unit sphere. 

6. T H E  K R A M E R S  E Q U A T I O N  W I T H  A 
P H Y S I C A L  C O N S T R A I N T  

Our model is two-dimensional Brownian motion described by the 
Kramers equation (22) and confined to the same strip as in Section 3. At 
the two boundary curves (9) the particle is specularly reflected. This is 
expressed by 

P(x, u, t) = P(x, u*, t) (x on boundary) 

where u* denotes the velocity u with reversed normal component. 
We transform again to the variables z = ~b(x 1, x 2) and y(x 1, x 2) but 

now require the coordinates y to be orthogonal to the z (which in two 
dimensions can be achieved). The two velocities transform according to 
(23) into 

Ocb @ u~ 
w =-~x~ U~, v =-~x ~ 
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The transformed equation is given by (24) or (26) and the boundary con- 
dition is, thanks to the orthogonality, 

P ( y , z , v , w , t ) = P ( y , z , v , - w , t )  for z = 0 ,  e (34) 

Our aim is not just to eliminate z, but also w, so as to obtain a 
Kramers equation for the motion on the curve M alone. Hence it is not suf- 
ficient to integrate across the strip as in the Smoluchowski case in Sec- 
tion 3. 

When we set z = e~ the transformed equation may be written in the 
form (26) 

OP(y, z, v, w, t) 
= [ !  5~176 + ~(1) ]  P 

Ot 
(35) 

0 ~.q~(o) = - - w - -  
0r 

0 0 
~e ~* ) = - v  ,~y-7- + ~ ( r l l  v 2 + 2 r l ~  vw + /~12  w 2 ) P 

63 2 0 2 
+ 2 ~ v  2102 Blt p+__7~wB~2_fi+20wl 

Taking into account that the coordinates 21 = y, 2~ 2 = Z are orthogonal, one 
finds from (25) 

1 0 log gyy 1 0 log gyy 
Fli =- 2 Oy F~l - 2 Oz 

1 Og== 1 Og.v 3, 
r~2  = C 1  - 

2gyy Oy 2g,z OZ 

1 C~ log gz= 1 0 log g== 
I~12 = 2 Oy I~22 - 2 Oz 

We are interested in those solutions of (35) that tend to a limit as e 
goes to zero. They can be found by means of the general method developed 
for eliminating fast variables. (2~ First one has to use the left null vectors of 
5r (~ for the construction of a projection operator ~ having the property 
~&o(o) = 0. Explicitly 

0p 
~2'~~ ~, v, w) = - ~ w = v = 0  

G 
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for all functions p obeying the boundary condition (34). This requirement 
is fulfilled by taking 

~p(y,~,v,w)=-~ {p (y ,~ ,v ,w)+p(y ,~ ,v , -w)}d~  

Evidently it happens that also ~(o)N = 0. As a result, one has for the pro- 
jected function ~ P =  R in the limit e ~ 0 (2~ 

3R(y, v, w, t) = (~19(1)~) R 
3t 

OR 0 
= - ~  ~ + V~ ( r h  v 2 + r ~ w  2) R 

0 ~2 R 

1 (~2 e 11 #2  ~12R + 1 c~ 2 e 22 
+5~-~v2 B R+0~-~w 5~-~w2B R (36) 

The superposed e and o indicate the even and odd parts of . ~  and B ~p as 
functions of w. In all coefficients the variable z is to be set to zero. 

Thus the physical constraint has enabled us to eliminate the variable z, 
but not yet w. We merely know that R must be an even function of w. The 
distribution of y, v alone is 

S(y, v, t) = R(y, v, w, t) dw 
oO 

On integrating (36), however, one obtains 

c?S(Y,~t v, t) OS ~_ - v ~ + r ~ 2  v2S 

+ F  1 a22~v I wZRdw-~--~f21Rdw 

1 ~2 
f BHR dw (37) + ~  

What are the conditions for it to become a closed equation for S? 
The last term can be expressed in S alone if ~11 is independent of w. 

(This is certainly the case if we are dealing with ordinary Brownian 
motion, since in that case B ~ is independent of all vectories.) The next but 



B r o w n i a n  M o t i o n  on a M a n i f o l d  17 

last term in (37) requires A~ to be independent of w (which is true for 
Brownian motion if the medium is isotropic). 

The first term on the second line of (37), however, involves the mean 
square of the transverse velocity and cannot be expressed in S alone for 
any type of Brownian motion. It is harmless only if/~12 ~ -  0 that is, if 

092  0 (0xi? 
o = aT - ay \ ~ j  

It means that the spatial distance between the points z = 0 and z = e must 
not vary along the strip: the strip must have a constant width. Thus only if  
the strip has a constant width does one obtain an autonomous equation for 
the surface density S(y, v, t). (We ignore the one remaining possibility, 
namely 

r{2w2- 21 = 0  

because it does not appear to have any physical implementation.) 
If this condition is not satisfied, the term with F~2 in (37) survives and 

the dependence of R on w cannot be eliminated. The integral is the trans- 
verse component of the pressure tensor and the whole term describes how 
this transverse pressure pushes the particle toward wider parts of the strip. 
Of course no such effect exists in the Smoluchowski case. 

7. B R O W N I A N  ROTATION AS AN E X A M P L E  
OF THE HEURISTIC A P P R O A C H  

So far our physical constraints consisted of reflecting walls. The Brow- 
nian particle could also be constrained to move on a manifold by a poten- 
tial that sharply rises away from M, say e - lW(x) ,  where 

1 
W(x) = ~ ~ [~V(x)]2 

v 

More generally, one could take as constraining potential 

re(x) = ltv~(x) ~ ( x )  ~ ( x )  (38) 

with a positive definite matrix of functions lv,. This is the type of constraint 
that is implicit in Lagrange mechanics. (4) Hence, if one has a mechanical 
system that is confined to a manifold ~ by Lagrangian constraints and is 
subject to random forces, one must confine the motion by (38) rather than 

822/44/1-2-2 
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by reflecting walls. The correct choice of W is determined by the actual 
constraining force. 

More precisely, one should start from the Newton equations including 
the potential ~ 1W, then add the fluctuating forces (and of course also 
damping), andfinally take the limit e --* 0. However, this is not what is nor- 
mally done. Instead one starts from the Lagrange equations, which is the 
same as Newton mechanics with ~ 1W in the limit e ~ 0, and only after 
having taken this limit one adds fluctuations. The proper form of the fluc- 
tuation terms is then somewhat of a guess, since the connection with the 
actual fluctuating forces is lost. The result is by construction a Fokker -  
Planck equation on the fiber bundle of a manifold, but its physical validity 
is not ascertained. 

Nonetheless we now apply this doubtful approach to the Brownian 
rotation of a rigid body. The purpose is to demonstrate how the terms 
describing fluctuations and damping are guessed and to obtain a Fokker -  
Planck equation on a manifold, which in the future may be compared to the 
result of a correct calculation. 

Classical mechanics treats a rigid body as a collection of point masses 
m= with a large number of constraints that have the effect of fixing all 
mutual distances. The coordinates of the masses in space may be written 

r.  = R + O(q) r* 

where R is the center of mass, r* the coordinates with respect to axes fixed 
in the body, and O(q) a three-dimensional orthogonal matrix, 
parametrized by three variables q~, for instance the Eulerian angles. For  
simplicity we also impose the constraint R = 0 so that we are left with the 
three Lagrange variables q=. The manifold M is the group manifold of 
0(3).  The kinetic energy is 

-1 Z m,,r*- 
2 

n 

c?O + c~O 1 
Oq---~." rnOr q s = -~ kr,(q) glr(l" Oqr 

In the presence of a potential U(q) one obtains for the velocities 0 r=  u r the 
equations of motion 

0U 
fg = - G ) ( q )  u'u j - kr=(q) ~?qS 

where k r~" is the reciprocal of krs and G} are the Christoffel symbols (25) 
constructed from the kr=. 

In order to introduce damping one adds an ad hoc friction term 
- f r u  ~, where the coefficients f ,  ~ may depend on q and u. This deterministic 
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system has a Liouville equation for the density in the phase space of q and 
u. To introduce fluctuations one adds to this equation a term with second- 
order derivatives (16'22'93 so as to obtain the Fokker-Planck equation 

~?P(q, u, t) 
3t 

OP 0 ( . , .OU\  u r -  ~ O~u'uJ P 

o ( 
+-~u ~ f~=u'+iluS ) P  (393 

This equation has the form (22) but acts on the manifold 0 (3 )  (or rather 
its tangent bundle) by construction. It has not been derived, however, it 
has been pieced together heuristically. One can only assert that, tf  a certain 
system obeys a Kramers equation on a manifold, that equation may have 
this form. 

To complete this heuristic construction we mention the additional 
information concerning B~,(q, u) that can be obtained from general 
physical laws. The thermodynamic equilibrium distribution 

pe(q, u) = const. IDet kr=[ ~/2 exp [ - ~-~ 

must obey (39). Also, the stronger condition of detailed balance must hold, 
provided that there is no external magnetic field or overall rotation. 

One consequence is that B"(q, u) and f;(q, u) must be even functions 
of the velocities u. (233 This is important because one might have chosen for 
the fluctuation term in (39) 

1 0 OP 
- -  _ _  B r s  _ _  

2 ~?u r ~?u = 

The difference between both choices is a drift term, sometimes called the 
spurious drift. It now turns out to be of the same form as the friction term 
and may be absorbed into f r .  Yet this demonstrates that there is no good 
reason to take the f s  ~ in (39) identical with the friction coefficients in the 
deterministic equations from which we started. This is of course the old 
dilemma of fluctuations in nonlinear systems (243 and can be resolved only 
on the basis of a more detailed study of the actual system, (25'233 as given for 
this case in Ref. 26. 

The other consequences of detailed balance are rather involved for this 
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general case. Normally, however, one assumes linear fluctuations, that is, 
B r" independent of the u. In that case one obtains 

1 
BrJ f ,  =-~-~  (q) kj,(q) 

which is the familiar fluctuation-dissipation relation. 

A P P E N D I X  

In ~d we define a metric da 2 = B U dx ~ dx j where B o. is the reciprocal of 
the coefficients B U in (18). In the new variables { y ,  z ~ } the transformed Bkz 
must be such that its cross e lements /?~ are of order Izl 2. Hence, B~ must 
also be of order Izl 2. 

Choose a transformation x i = f f ( y ,  z) such that z = 0  on ~ .  In the 
neighborhood of 

x i = f i ( y , O )  ~ i i v ~ i . . .  + z f ,~(y,  O) + O) + ~z z f , ~ ( y ,  

=_ X~(y) ~ ~ 1~ ~ + z Y~(y) + " '  + ~z z Z~ , (y )  (40) 

The variables y now simply act as parameters on M. One has, omitting 
second order in z, 

d x  i i i r i Y,~,r) dy + ( Y , , + z  Z ~ ) d z  ~ = ( X r + z  ~ ~ i 

When da 2 is expressed in the new variables one finds for the coefficients in 
the cross terms 

 rv=[Xlr+z G,r]sdx+ J J z Y~ , ) [Y , .+z  Z ~ ]  

In order that this vanishes in zeroth and first order of z one must have 

XIrB ~ Y~ = 0 (all r, v) (41) 

i k i j Yiu,rB~jY{ + X.,.Bij, k Y .  YJ + X, rBijZv~,=O (all r, v ,#)  (42) 

Here Bii and its derivative Bu, k are taken on ~ ,  i.e., for x i =  Xi(y) .  
The first order (41) states that the vectors Y~ must be orthogonal 

(with respect to our metric in Rd) to the n - - d  tangent vectors X,r. They 
must be linearly independent for the transformation to be admissable. Of 
course it is easy to find n independent normal vectors at each point of M. 

The second condition (42) determines the Z,,, for each pair v,/~, or 
rather the projections thereof on the tangent vectors X,r. Obviously such 
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Z,., can be found, but there is the additional requirement that Z~u = Zu~. 
Hence we must have 

Bo.(Y'~,,.Y ~ -  Y~, , .Y~)+X,erBti ,~(Y~Y{ - Y~ Ys = 0 (43) 

If one can find vectors Y, that obey both (41) and (43), the Z , ,  can be 
found from (42) and the resulting transformation (40) obeys all 
requirements. If no such Yv can be found, there is no physical constraint 
(of the type envisaged) that leads to a diffusion equation on ~ .  

From now on we take isotropic, homogeneous diffusion: B ~ = ~io. That 
turns out to be sufficient for constructing a counterexample. Equations (41) 
and (43) reduce to 

Xr" Y~ = 0 (44) 

Y~,~" Yv - Y~,~" Y~, = 0 (45) 

Select in every point of ~ a set of n unit vectors Np normal to ~ and to 
each other 

N p - X r = 0  Np .N~= 6 p ~  

At each point y the unknown Yv are linear combinations of them 

v~(y) = c~(y) Np(y) 

The variation of Np with y is given by a connecting equation 

~  u Np,, .= C%r o + ~prX,, (46) 

G where COpr --~0~r. Condition (45) becomes 

P P _ _  P P ~ - s  cr C ~ r - - c P ( I )  ~ C c r ~ O  
C,u, rCv  Cv,rCkt - , u - -  p r - v  - v  -- pr  ,u 

In terms of the matrices Cvp = c~ and ([2r)p~ = og~r 

C,rC + - CC+r + 2C[2rC + = 0 (47) 

where C + is the transposed. 
This equation is quadratic in C, but can be reduced to a linear one. 

First note that the following equation 

D + D  r - D+~ D - 2D +g2,D = 0 

is obeyed by both D =  C + and D =  C -~. Hence if C + = C -1 for one value 
of y~, it will be true for all values of yr. This is achieved by taking in one 
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point of M the Y~ identical with the Np. (This is no restriction because (45) 
" * with constant a~.) Sub- is invariant for the transformation Yv=a~Yu 

stituting C + = C  -~ in (47), one obtains the linear differential matrix 
equation 

C~ = - Cf2 r (48) 

One may also note that the orthogonality of C ensures that the Y v are 
orthonormal,  so that (45) reduces to 

Y / l , r  " Y~ = 0 or Y~,~' Np = 0 (49) 

This leads again to (48). 
If d -  n = 1 so that r takes on only a single value, this equation can be 

integrated. Hence for a curve in ~d it is always possible to f ind physical con- 
straints that lead to a (one-variable) diffusion equation along that curve. This 
is a local statement and applies only to simply connected curves. I do not 
say anything about global properties. 

If d -  n > 1, however, there is the integrability condition 

~-~ r,s - -  ~'~ s, r - -  ~ s ~ r -~- ~'~ r ~ s = O (50) 

On the other hand, we know from (46) 

N o , r s = O O ~ o r , s N , , + O ) p r ( f . O ; s N . - F ~ ; s X ~ , ) + ~ p ~ , s X . + ~ o r X u ,  ~ (51) 

Multiply with N~ and define the (nonsquare) matrices Sr and L~ by 

("~r)pu = ~ ; r ,  ( t r ) u  z = X , , u  . N ~  

Then the fact that (51) is symmetric in r, s gives 

Consequently the integrability condition is tantamount to 

~ r L s = ~ s L r  (52) 

It is easy to see that Lr = -TS~ + where Yrs = Xr .X, is the metric tensor of 
~ .  Hence (52) may be written 

Lr +7 1L,=LJ-7  1Lr (53) 

Although the matrices Lr depend on our choice for the Nr, the criterion 
itself does not. 
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We now give an example of a manifold for which (48) cannot  be 
satisfied. Since we know that  for d - n  = 1 and for n = 1 it can always be 
satisfied, we take d = 4, n = 2. Consider  the two-dimensional  M defined by 

X(e, fl) = (c~ cos fl, :r sin//,/~, :t) (54) 

where ~ , / / s t a n d  for yl ,  y2. Then 

X~ = (cos fl, sin fl, 0, 1) 

X a = ( - a  sin fl, a cos fl, 1, 0) 

and we choose 

N1 = (1 + c~2) -1/2 (sin/~, - co s /~ ,  ~, 0) 

N2 = 2 1/2 (cos/~, sin fl, 0, - 1 ) 

Because of the or thogonal i ty  of C we may write 

Y1 = N1 cos 0 + N2 sin 0 

Y: = - N ~  sin 0 + N2 cos 0 

and have to determine 0(:t,//) so as to satisfy (51). By direct substi tution 
one obtains 

60 80 1 
YI,~ �9 Y2 -~ ~--~, YI,]~' Y2 : 2 

Clearly there exists no 0(~,/~) for which both  these quantities vanish. One 
may also verify explicitly that  (53) is not  obeyed. 
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